Course Title:	CS-882, Advanced Information Security
Credit Hours:	3+0
Pre-requisites:	■ Information Assurance
-	
Course	This course is aimed at preparing students for research in
Description:	computer security and includes advanced security topics such
	as TPMs, VoIP Security, remote attestation, cloud computing
	security, computer forensics, SPAM and anonymous/onion
	routing.
Tools and	• jTSS, jTPM
Technologies:	■ Tor
Learning	On successful completion of this course students will be able to:
Outcomes:	Understand state of the art in security research
	2. Engage in active research at the forefront of these areas.
Tentative MS	Distributed Intrusion Detection using Map Reduce
Thesis:	SEECS Private Cloud Security Architecture
	TPM Attestation for Private Clouds
Text Books:	Schneier, Bruce; Applied Cryptography
Reference	Peltier, Thomas; Information Security Risk Analysis
Books:	
Course	Physical security and forensics
Contents:	 Forensics/Spying, Disks, Paper, Phones
	 Emissions Security (EMSEC), TEMPEST
	■ SPAM
	○ SPAM Origins
	 SPAM Categories
	○ How Email Works, Identity Concealing: Bot
	Networks
	Open Proxies, Open Mail Relays
	 Empirical Analysis of SPAM, Conversion Pipeline
	Black Listing Countermeasures

- Payment Based Countermeasures
- DKIM
 - Email Ranking, Bayesian Spam Filtering
 - Apache Spam Assassin
- Digital Rights Management
 - Software Reverse Engineering (SRE)
 - o Digital Rights Management (DRM) Enforcement
 - Rights Expression Languages (RELs)
 - Anti-Disassembly, Anti-Debugging, Tamper
 Resistance
 - o Code Obfuscation, Software Cloning
 - MetaMorphic Software
 - Case studies: METSRights, ODRL, MPEG -21
- Remote Attestation
 - Hardware TTP
- TPM Interconnection
 - Linux Integrity Measurement
 - Policy-Reduced Integrity Measurement
 Architecture
 - Case study: Xen Hypervisor
 - Intel Trusted Execution Technology
 - ARM TrustZone, Terra Architecture, Trusted
 Quake
 - Windows BitLocker
- Security Issues in VolP
 - VolP Standard Suites
- Session Initiation Protocol (SIP)
 - o VoIP Security Vulnerabilities (Protocol Issues)
 - Security Measures (Signaling) and (Media)
 - Skype Issues
- Policies
 - Chinese Wall, Role-Based Access Control
 - Take-Grant Model, Discretionary Access Control

- o Mandatory Access Control, Bell-LaPadula
- Clark-Wilson Integrity Model
- Certification and Enforcement Rules
- Separation of Duty in Model
- Attribute based Access Control
- Case Study: Shibboleth Properties
- Encrypting with Identities and Attributes
 - o Public-Key Encryption
 - O Why Don't People Use Encrypted Email?
 - Identity-Based Encryption (IBE)
 - IBE Usage and Security
 - Case study: Checkpoint
 - Attribute-Based Messaging
 - Ciphertext-Policy ABE (CP-ABE)
 - o Cryptographic Concern: Collusion in CP-ABE
 - KP-ABE Application: Cable TV in the Tivo Age
 - Example Application: KP-ABE as Delegation
 Mechanism
- Wireless Security
 - Sensor Networks, Secure Bootstrapping Problem
 - Capture attacks, Evaluation Metrics, q-composite keys
 - Multi-path Key Reinforcement
 - Random-pairwise key scheme
- Jamming
 - o Constant Jammer, Deceptive Jammer
 - o Random Jammer, Reactive Jammer
 - Defense against Jamming
 - Coordinated Channel Switching
 - Synchronous Spectral Multiplexing
 - Asynchronous Spectral Multiplexing
 - ZigBee, SKKE, Cognitive Radio
 - Dynamic Spectrum Allocation

- o Transmitter Verification Scheme
- Detecting Primary Beacons
- Introduction, Name services and the DNS
- Information Flow
 - o Non-interference models and analysis techniques
 - Confinement and covert channels
 - o State Automation, Capability System, Projection
 - o Non-Interference, Security Policies and MLS
 - Isolation and Channel Control, Entropy
 - Conservative Automated Analysis of Flow
 - Compiler-based Mechanisms, Chroot and Sandboxes
 - o Timing Channels and Noise, Analysis using SRM
 - o Case Study: Channels found in Xenix
 - Covert Flow Trees